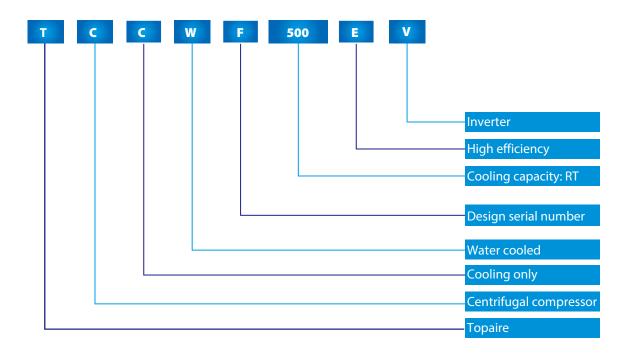


TCCW7 - † Series

TOPAIRE WATER COOLED INVERTER DIRECT DRIVE CENTRIFUGAL CHILLER Cooling Capacity: 250 to 1300 TR (879 to 4572 kW)



Contents

Overview

Nomenclature

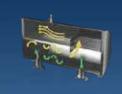
Certified in accordance with the AHRI Water-Cooled Water-Chilling and Heat Pump Water-Heating Packages Using Vapor Compression Cycle Certification Program, which is based on AHRI Standard 550/590 (I-P) and AHRI Standard 551/591 (SI). Certified units may be found in the AHRI Directory at www.ahridirectory.org

Benefits and Features:

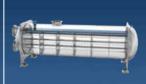
Energy saving: COP up to 6.58, IPLV up to 10.69

Technology leading: more than 20 patents

Environmentally friendly: less refrigerant charge and lower noise


Flexibility: wider operation range but compact size

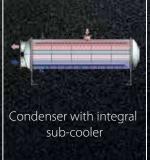
Unit Member

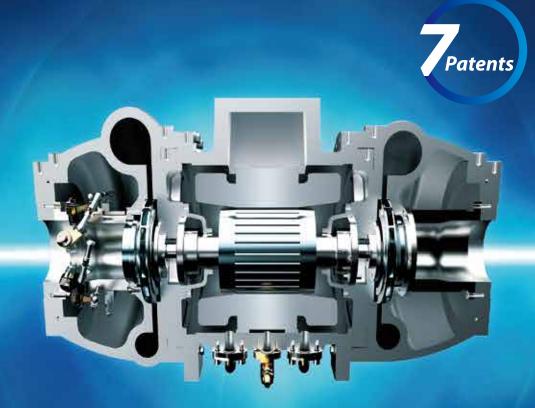


Back-to-back two-stage compressor

Condenser with integral economizer (patented)

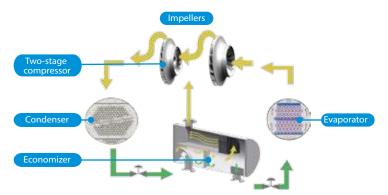
250-550RT: built-in economizer; 600-1300RT: external economizer


Full falling film evaporator (patented)



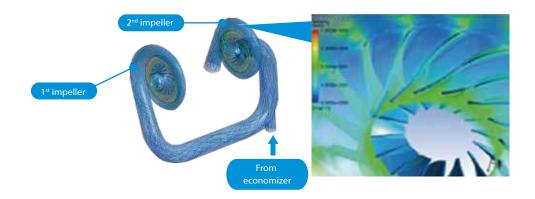
Features

Horizontally back-to-back centrifugal compressor

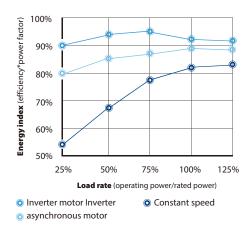

Inverter direct-drive centrifugal compressor adopts the patented technologies as follow:

- 1) Horizontally back-to-back self-balanced impeller
- 2) Impeller profile joint and fastening technology
- 3) Inlet guide vane regulating mechanism with rolling element
- 4) Integration design of thrust plate and rotation axis
- 5) Wire leading device and motor equipped with wire leading
- 6) A centrifugal chiller inlet guide vane correcting algorithm
- 7) Gas-inlet regulation mechanism and centrifugal compressor with this mechanism

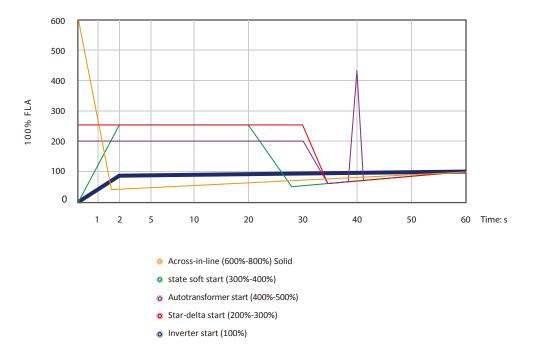
Energy Saving


Two-stage compressing >>>

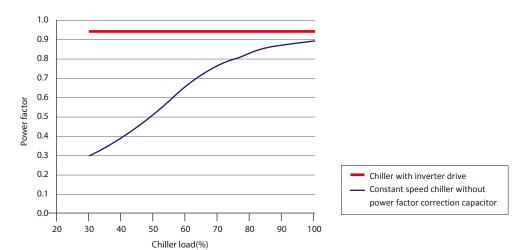
- 6% higher efficiency than single-stage compression.
- Lower speed and higher reliability.
- Unique three-stage separation economizer, reliable and effective.


Aerodynamic compressor design >>>

- With 3D-flow closed and strongly backward-bladed impeller design, impeller efficiency higher than 97%.
- Unique pipeline crossover, with large backflow radius to reduce flow losses and noise.
- The technology of two-stage compression with economizer fully demonstrates the advantage of aerodynamic design and brings higher efficiency to the system.


High efficiency inverter motor >>>

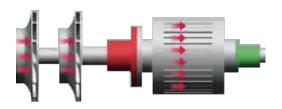
- Motor efficiency as high as 95.5%, energy index (efficiency power factor) over 2% higher than inverter asynchronous motor.
- High power density and small size, with size only 20% of AC inverter motor.
- Designed based on speed and high-frequency operation, with variable frequency range of 120~300Hz.


Zero in-rush current >>>

The unit adopts inverter starting mode, which produces zero in-rush current during the starting process and enables a stable operation from 0A to FLA.

0.95 power factor >>>

The high power factor eliminates the need for a power factor connection capacitor.



Leading Technology

Back-to-back compression technology

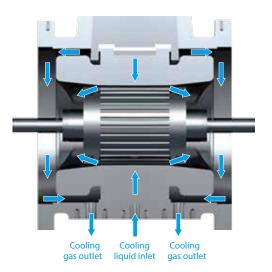
Horizontally back-to-back impeller

- First developed the patented horizontally back-to-back compression technology with crossover pipe structure.
- Balance the thrust forces for longer life span and improved efficiency by less seal leakage and no gear loss.

Patented IGV correcting algorithm

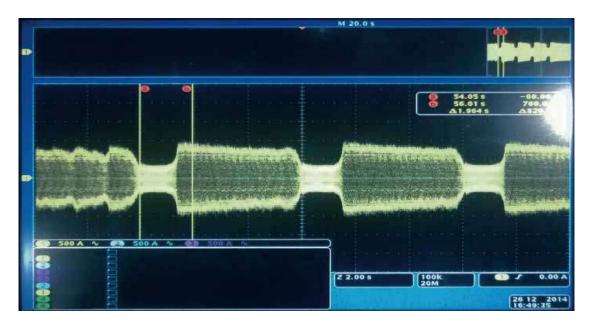
- Realized stable load regulating, energy saving and more comfort.
- High precision and high compatibility.
- Invented a centrifugal chiller load regulate method.

Guide vane opening correction model: B=a*sd1(t)2+b*sd1(t)+c B: the 2nd guide vane opening sd1(t): the 1st guide vane opening a: quadratic coefficient b: monomial coefficient c: constant


Traditional serial impeller

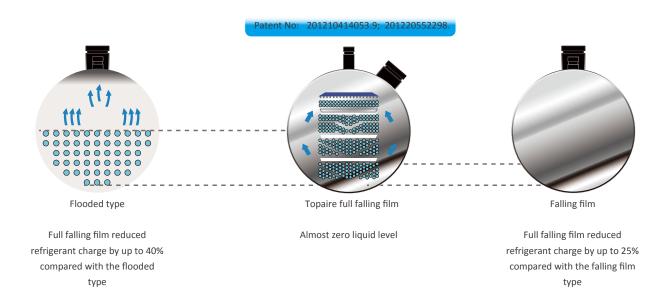
>>

- The traditional two-stage centrifugal impellers are arranged in serial to the same direction, and the axial forces on the two impellers are from the same direction and overlapped.
- More stress on thrust bearing, cause mechanical damage, and require higher reliability of bearing.


360° motor cooling technology >>>

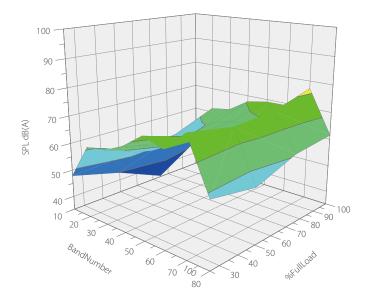
- The motor is cooled by the refrigerant, with liquid supply and gas return at the bottom, thus high efficiency.
- Cooling method eliminates the potential for shaft seal leaks and refrigerant/ oil loss.
- The motor adopts F-level insulation design, with three PTC temperature switches preset in the winding to ensure constant safety.

Anti-surge technology


- Extend the surge curve: real-time to adjust the motor speed in different operation condition.
- Precise monitor and comparing: real-time to monitor running current and comparing running current curve to current data base in the controller.

Typical current waveform in surging condition

Full Falling Film Evaporating Technology >>>

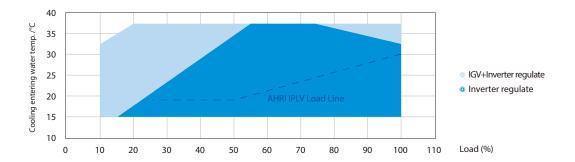

- First created the full falling film evaporator and adopted spray technology to achieve film evaporation on the surface of the heat exchange tube, greatly increasing overall heat transfer efficiency and reducing refrigerant charge by up to 40%. The
- patented refrigerant distributor can improve the homogeneity of the liquid to avoid local drying, fully showcasing the performance of the heat exchange tube and increasing unit efficiency.

Environmentally friendly

Quieter operation >>>

Inverter direct-drive centrifugal chiller is the quietest chiller in its size range with sound pressure ratings as low as 78 dBA per AHRI Standard 575. That makes it ideal for sound sensitive environments such as schools, performance halls, museums, condominiums and libraries.

LEED >>>


Zero-ozone depletion R134a refrigerant, green, and has no elimination cycle. Full falling-film technology reduces refrigerant charge by up to 40%, which enables you to qualify for maximum Leadership in Energy and Environmental Design (EEED) points for Enhanced Refrigerant Management. And with the chiller's high efficiency, you can also earn additional points for credits from Optimized Energy Performance (EAc1).

Flexibility

Wider operation map >>>

- Only inverter regulation on AHRI condition to save energy.
- Capacity load from 10%~100% and cooling EWT up to 37 °C are able to satisfy the application requirement of multiple operating conditions (load from 10%-20% need hot gas bypass).

More choices >>>

Unit-mounted and free standing starter panel are available.

Compact size >>>

Compact size is ideal for retrofit as well as small installation space project. The spaces a ving scanad dup as quickly as the energy savings.

Specifications

Model		TCCWF	250EV	300EV	350EV	400EV	450EV	500EV	550EV
		RT	250.0	300.0	350.0	400.0	450.0	500.0	550.0
Cooling capacity		kW	879.0	1055	1231	1406	1582	1758	1934
		10⁴kcal/h	75.59	90.71	105.8	121.0	136.1	151.2	166.3
Power input		kW	141.2	165.2	193.0	223.9	247.3	276.6	310.1
СОР		W/W	6.224	6.385	6.376	6.282	6.399	6.356	6.237
IPLV		W/W	9.341	9.591	9.737	10.46	10.61	10.59	10.69
Motor configuration power		kW	200.0	200.0	240.0	280.0	280.0	315.0	350.0
Rated current		А	230.7	269.9	315.3	365.7	403.9	451.9	506.6
Max. operating current		А	262.4	305.4	358.9	416.1	457.5	507.9	565.8
Locked-rotor current		А	1523	1523	1883	2603	2603	2985	3338
	Water flow	m³/h	135.8	163.0	190.1	217.3	244.4	271.6	298.8
Evaporator	Pressure drop	kPa	43.3	43.2	43.6	42.9	43.2	42.4	44.1
	Water pipe connection	mm	DN200	DN200	DN200	DN250	DN250	DN250	DN250
	Water flow	m³/h	169.7	202.9	236.8	271.1	304.2	338.3	373.1
Condenser	Pressure drop	kPa	44.7	45.7	45.9	44.8	44.6	46.5	46.8
	Water pipe connection	mm	DN200	DN200	DN200	DN250	DN250	DN250	DN250
	Length	mm	3650	3650	3650	3650	3650	3650	3650
Unit dimensions	Width	mm	1940	1940	1940	2000	2000	2000	2000
	Height	mm	2150	2150	2150	2150	2150	2150	2150
Shipping weight		kg	4650	4800	4950	5650	5800	5950	6100
Running weight	kg	5580	5780	5980	6730	6930	7130	7330	

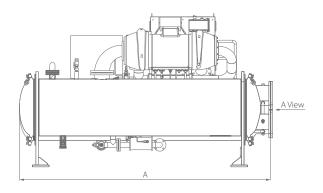
Note

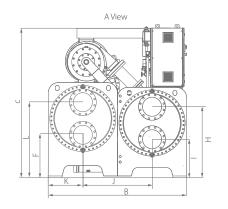
⁽¹⁾ Performance and efficiency are based on AHRI 550/590-2018. Evaporator conditions: water inlet=54°F, water outlet=44°F, fouling factor=0.0176m². °C/kW; Condenser conditions: water inlet=85°F, water outlet=94.3°F, fouling factor=0.0440m². °C/kW.

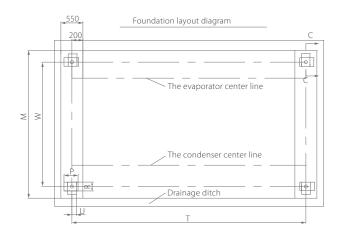
⁽²⁾ The design's max working pressure for both the evaporator and condenser are 1.0MPa, but higher pressure can be customized if required.

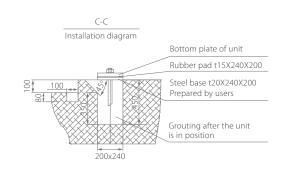
⁽³⁾ As a result of the continuous improvement of the product, the above parameters may be changed, please refer to the product nameplate and in-kind.

Model	TCCWF	600EV	650EV	700EV	750EV	800EV	850EV	
	RT	600.0	650.0	700.0	750.0	800.0	850.0	
Cooling capacity		kW	2110	2285	2461	2637	2813	2989
		104kcal/h	181.4	196.6	211.7	226.8	241.9	257.0
Power input		kW	331.3	357.2	378.0	407.5	442.1	460.7
COP		W/W	6.367	6.397	6.511	6.471	6.362	6.488
IPLV		W/W	9.315	9.628	9.991	10.16	10.19	10.15
Motor configuration pow	er	kW	400	400	450	450	500	560
Rated current		А	541.3	583.6	617.6	665.7	722.3	752.6
Max. operating current	Max. operating current			658.9	696.0	745.8	801.6	850.4
Locked-rotor current	Locked-rotor current			3281	3905	3905	4864	6495
	Water flow	m³/h	325.9	353.1	380.3	407.4	434.6	461.7
Evaporator	Pressure drop	kPa	53.8	52.2	58.6	56.1	60.1	56.2
	Water pipe connection	mm	DN300	DN300	DN300	DN300	DN300	DN300
	Water flow	m³/h	404.3	437.9	470.6	504.7	539.7	572.2
Condenser	Pressure drop	kPa	51.4	54.5	51.0	55.1	54.7	55.2
	Water pipe connection	mm	DN300	DN300	DN300	DN300	DN300	DN300
	Length	mm	4700	4700	4700	4700	4700	4750
Unit dimensions	Width	mm	1950	1950	1950	1950	1950	2150
	Height	mm	2750	2750	2750	2750	2750	2900
Shipping weight		kg	9060	9120	9330	9410	9490	10665
Running weight	kg	10700	10790	11080	11210	11330	12885	

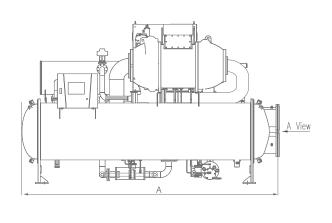

Model	TCCWF	900EV	950EV	1000EV	1100EV	1200EV	1300EV	
	RT	900.0	950.0	1000	1100	1200	1300	
Cooling capacity		kW	3164	3340	3516	3868	4219	4571
		10⁴kcal/h	272.2	287.3	302.4	332.6	362.9	393.1
Power input		kW	482.2	513.3	538.8	591.8	641.7	698.0
COP		W/W	6.563	6.507	6.525	6.535	6.575	6.549
IPLV		W/W	10.37	10.39	10.55	10.35	10.57	10.69
Motor configuration pov	ver	kW	560	560	630	700	700	800
Rated current		А	787.7	838.6	880.3	966.9	1048	1140
Max. operating current	А	888.6	945.5	991.7	1089	1181	1282	
Locked-rotor current	А	6495	6495	6246	6638	6638	6955	
Evaporator	Water flow	m³/h	488.9	516.1	543.2	597.5	651.9	706.2
	Pressure drop	kPa	62.4	54.5	58.4	57.0	57.0	56.0
	Water pipe connection	mm	DN300	DN300	DN300	DN300	DN300	DN300
	Water flow	m³/h	605.2	639.8	673.3	740.7	807.5	875.1
Condenser	Pressure drop	kPa	58.9	53.4	55.6	52.6	53.4	58.0
	Water pipe connection	mm	DN300	DN300	DN300	DN300	DN300	DN300
	Length	mm	4750	4750	4750	4800	4800	4800
Unit dimensions	Width	mm	2150	2150	2150	2260	2260	2260
	Height	mm	2900	2900	2900	3050	3050	3050
Shipping weight		kg	10690	11050	11050	13320	13520	13650
Running weight	kg	12915	13450	13450	16180	16495	16710	

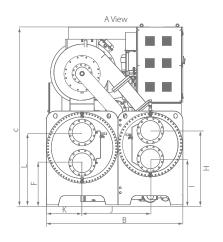

⁽¹⁾ Performance and efficiency are based on AHRI 550/590-2018. Evaporator conditions: water inlet=54°F, water outlet=44°F, fouling factor=0.0176m². °C/kW; Condenser conditions: water inlet=85°F, water outlet=94.3°F, fouling factor=0.0440m². °C/kW.

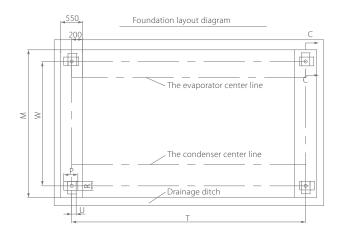

(2) The design's max working pressure for both the evaporator and condenser are 1.0MPa, but higher pressure can be customized if required.

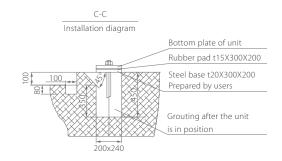

(3) As a result of the continuous improvement of the product, the above parameters may be changed, please refer to the product nameplate and in-kind.

Dimensions








		Dim	ensions		Support						Pipe locate position					
Model	Length (A)	Width (B)	Height (C)	М	W	Р	R	U	Т	F	L	K	I	Н	J	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
TCCWF250EV																
TCCWF300EV	3650	1940	2150	2240	1740	240	200	100	2780	670	1040	485	605	975	970	
TCCWF350EV																
TCCWF400EV																
TCCWF450EV	2050	2000	2450	2200	1000	240	200	100	2700	620	1000	500		1025	1000	
TCCWF500EV	3650	2000	2150	2300	1800	240	200	100	2780	620	1090	500	555	1025	1000	
TCCWF550EV																

Dimensions

		Dimensions			Support						Pipe locate position					
Model	Length (A)	Width (B)	Height (C)	М	W	Р	R	U	Т	F	L	К	I	Н	J	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
TCCWF600EV																
TCCWF650EV																
TCCWF700EV	4700	1950	2750	2750 2550	2550 1750	1750 240	200	200	3780	635	1095	500	683	1143	975	
TCCWF750EV	.,,,,	1330	2,50													
TCCWF800EV																
TCCWF850EV																
TCCWF900EV	4750	2150	2900	2750	1950	240	200	200	3780	710	1180	550	765	1225	1075	
TCCWF950EV																
TCCWF1000EV																
TCCWF1100EV																
TCCWF1200EV	4800	2260	3050	2860	2060	240	200	200	3780	720	1220	593	785	1255	1130	
TCCWF1300EV																

	Maintenance s pace (mm)									
Model	Т	Υ	S	Z						
TCCWF250EV										
TCCWF300EV										
TCCWF350EV										
TCCWF400EV	1000	1200	1200	3200						
TCCWF450EV										
TCCWF500EV										
TCCWF550EV										
TCCWF600EV			1200							
TCCWF650EV										
TCCWF700EV										
TCCWF750EV										
TCCWF800EV										
TCCWF850EV	1000	1200		4500						
TCCWF900EV	1000	1200		4300						
TCCWF950EV										
TCCWF1000EV										
TCCWF1100EV										
TCCWF1200EV										
TCCWF1300EV										

Note: $\ensuremath{\mathsf{Z}}$ is the tube removal space and both ends can be selected.

Options/ Accessories

Items	Standard	Optional
Power supply	380V-3Ph-50Hz	380~460V, 50/60Hz
Water inlet/outlet connection type	Flange	×
High pressure water box	1.0MPa	1.6MPa, 2.0MPa
Marine water box	×	٧
Anti-vibration	Rubber pad	Spring isolator
Vessel code	GB	ASME, PED
Heat recovery	×	٧
Chilled water Delta T	5°C	6°C~11°C
Centrifugal heat pump	×	Hot water temperature up to 45°C
Water storage	×	V
Communication protocol	Modbus-RTU (RS485)	BACnet IP, BACnet MS/TP (RJ-45 port)
Hot gas bypass	×	٧
Flow switch	Differential pressure	×
Knockdown shipment	×	٧
Witness performance testing	×	٧
Chiller Plant Control	×	V
Smart Cloud platform	×	V
QuickView	×	V
Tube automatic cleaning system	×	٧
Low total harmonic current distortion rate (THDI)	≤35% (full load)	≤5% (full load)

Note: For other options, please contact our engineers.

Operating and Control System

Intelligent color touch screen

The perfect operating and control system of centrifugal chiller integrates a series of control and monitoring functions including intelligent operations, safety protection and interlocking control to achieve reliable start, high efficiency operations and internal control of chiller.

Interface display

- 10-inch true color graphic display interface
- Full screen touch operation experience
- Visual display of unit operating status
- Multi-level password protection
- Unit operation data display
- Pre-alarm/alarm display and recording
- Operation log display

Operation control

- Freely select the inlet/outlet water control mode
- Target temperature settings
- Auto loading/unloading and soft loading
- Automatic optimization control function
- Quick start and startup after power restoration (optional)
- Independent start/stop function
- Remote and timed power-on/off functions
- Detailed unit status query

Interlocking control

- Frequency and guide vane control
- Water system bypass control
- Chilled water and cooling water pump interlocking control
- Cooling tower fan interlocking control
- Reserved upper computer interface control
- Reserved alarm interlocking control
- Pre-startup safety interlocking control

Safety protection

- Compressor current protection
- Anti-surge protection
- Condensing pressure high/too high protection
- Evaporation pressure low/too low protection
- Water outage protection
- Operating anti-freeze protection
- VFD panel fault protection

Note: The control interface and display content vary with each model. Please refer to the actual product.

Head Office

TOPAIRE SALES & SERVICES SDN BHD

(274725-W)

No.A7-2-2, Block A, Megan Salak Park, Jalan 2/125E, Taman Desa Petaling, 57100 Kuala Lumpur.

Tel : 603-90563228 (Hunting line)

603-90562818 / 603-90562868.

Fax: 603-90562800.

Email : sales@topaire.com.my

Manufacturer

Is certified under the ISO 14001 International standard for environmental management.

Certificate No.15912E10020R0L

Manufacturer

Certificate of Occupational Health and Safety Management System

Certificate No. 15912S20006R0L-1.

Manufacturer

Is certified under the ISO 9001 International standard

for quality assurance. NO.01 100 019209

Branches

Penang

No 4, Lengkok Kikik 2, Taman Inderawasih, 13600, Prai, Pulau Pinang.

Tel: 04-399 2050/1 Fax: 04-398 2050

Johor Bahru

No. 62, Jalan Permas Jaya 9/13, Bandar Baru Permas Jaya, 81750 Johor Bahru, Johor Darul Takzim.

Tel: 07-388 4600/1 Fax: 07-388 4602

Kota Bahru

Lot 1848, Jalan Hospital, Kg. Cherang, Taman Kenangan, 15200 Kota Bahru, Kelantan.

Tel: 09-748 9295 Fax: 09-748 9297

Sabah

Lot 2, (DBKK No.69) Lorong Inanam 5 3/4 Miles, Tuaran Road, 88450 Kota Kinabalu, Sabah.

P.O. Box 526, 88857, Inanam, Kota Kinabalu, Sabah

Tel: 088-388 339 Fax: 088-389 339

